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Abstract 

Window taper functions of finite apertures are well-known to control undesirable 
sidelobes, albeit with performance trades.  A plethora of various taper functions have 
been developed over the years to achieve various optimizations.  We herein catalog a 
number of window functions, and compare principal characteristics. 
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“It is a capital mistake to theorize before one has data.”  
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Foreword 

This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 
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1 Introduction 

Fourier Transform relationships abound in endeavors dealing with signals where one 
domain is bounded by a finite aperture, and analysis needs to be examined in the other 
domain.  Such endeavors include antenna beam analysis/design, radar and 
communication systems, optics and optical processing, data interpolation, spectral 
analysis, and general data analysis/processing. 

In such systems, finite apertures inescapably cause the generation of undesirable 
sidelobes, or ringing, in the other domain.  Sidelobes, however, may be reduced and/or 
somewhat controlled by the employment of window taper functions across the finite 
aperture, albeit at the expense of other signal degradations. 

Finding or determining an optimum window taper function for some purpose has been 
the subject of much research over the years.  Parzen1 states that “The present period of 
research may be said to have commenced about 1945, when Bartlett2 and Daniell pointed 
out that the periodogram needs to be smoothed if it is to form a consistent estimate of the 
spectral density.”  Today, many specific functions and function families exist as a result, 
and new ones periodically appear. 

In various disciplines, a window taper function may go by other names, including any of 
the following. 

Window, Window function, 
Taper, Tapering function, 
Shading, 
Weight function, 
Smoothing function, smoothing kernel, 
Averaging kernel, 
Apodization function, 
Beamshaping, Beamshaping functions. 

There are no doubt others.  We will make use of several of these terms interchangeably. 

Principal general references for this report include 

A report by Harris detailing characteristics of a number of window taper 
functions.3  Harris also wrote a paper on substantially the same analysis, albeit 
with additions.4 

A text by Prabhu also details a number of different window taper functions.5 

A paper by Anterrieu, et al., discusses a number of window functions for 
Synthetic Aperture Imaging Radiometers.6 
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We also suggest an excellent treatment of window functions is given in a pair of papers 
by Blackman and Tukey.7,8  These were later collected into a book by Blackman and 
Tukey.9  Blackman extended this work in a subsequent book.10 

As previously stated, the literature on window functions is fairly extensive, which begs 
the question “Why does the world need yet another report on this topic?” 

We offer as answer the observation that extensive catalogs of window functions are in 
fact somewhat sparse.  As a consequence, this report attempts to be somewhat broader in 
scope than previous publications.  We have furthermore attempted to place the various 
window taper functions discussed in this report into a common format, so that they may 
be easier to compare.  We also suggest that the references may be of some value in 
cataloging original source material. 

Finally, we have attempted to keep the discussion on a somewhat practical level, to 
facilitate ready employment by system analysts, designers, and engineers. 
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2 Background 

2.1 Some Definitions 

To set up the following discussion, we begin by defining a generic signal 

 x t   = continuous function of time t. (1) 

As we will be interested in the Fourier Transform of functions, we accordingly define 

    2j ftX f x t e dt






    = forward transform, and 

    2j ftx t X f e df




   = inverse transform, (2) 

where the Fourier Transform is in terms of frequency f.  We may use shorthand to 
identify the transform pair as 

   x t X f . (3) 

While we have identified the Fourier Transform and its inverse in terms of 
time/frequency, we might just as easily have used other constructs, such as perhaps 

frequency/time 
space/wavenumber 
wavenumber/space 
current density / far-field pattern (for antennas) 

We note that in radar signal processing, specifically Synthetic Aperture Radar image 
formation, we generally collect raw wavenumber data and therefrom calculate spatial 
information. 

There are a multitude of variations for defining the forward and inverse transforms as 
well.  Nevertheless, we will hereafter discuss in terms of time/frequency and use the 
definitions of Eq. (2).  We further identify several particularly useful functions as 
follows. 

The rectangle function is defined as 

 
1 1 2

rect 1 2 1 2

0 1 2

z

z z

z

 
 
 

. (4) 
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The particular value at 1 2z   doesn’t particularly matter for continuous-time 
calculations, but does lead to some subtleties for discrete-time systems. 

We define the sinc function as 

  sin
sinc

z
z

z




 . (5) 

We note that these constitute a transform pair, namely 

   rect sinct f . (6) 

Hereafter we will also make use of a number of Fourier Transform properties and 
identities that can be found in any number of references. 

2.2 The Need 

Consider that we have knowledge of our time function over only a limited interval.  
Accordingly, the function segment available to us can then be described as the product of 
the complete function  x t  and an observation interval, that is 

    0recta
t t

x t x t
T

   
 

  = observed segment of the desired function, (7) 

where Fourier Transform identities allow us to identify the Fourier Transform pair 

 020rect sincj tt t
Te Tf

T
  

 
, (8) 

where we will employ the parameters 

0t  = center of observation interval, and 

T  = length of the observation interval (presumed positive). (9) 

The observation interval in some fields is referred to as an “aperture.”  We will use this 
term herein as well.  The “segment” is the portion of the function that falls within the 
aperture.  We may then also identify the Fourier Transform pair 

   a ax t X f , (10) 

where we may relate the segment’s Fourier Transform to the original function’s Fourier 
Transform as 
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     02* sincj t
aX f X f Te Tf , (11) 

where “*” denotes convolution. 

We observe that the spectrum of the segment is a smeared version of the spectrum of the 
original function, where the degree of smearing depends on the length of the observation 
interval, that is, the size of the aperture. 

This smearing is actually a linear filtering of the spectrum, that is, a filtering in the 
spectral domain of the signal.  Such smearing is sometimes referred to as “spectral 
leakage,” or “frequency leakage.” 

Example 

Consider as example the function where  x t  is a constant modulus rotating vector, 

which we also refer to as a complex sinusoid, 

  02j f tx t e  , (12) 

where 

0f  = frequency of oscillation. (13) 

We note that this function has spectrum 

 02
0

j f te f f   , (14) 

where 

 z  = Dirac delta function. (15) 

For our convenience, let the aperture be centered at zero with unit width, that is, the 
observed signal is 

     rectax t x t t . (16) 

The observed signal’s spectrum is then  

       0 0*sinc sincaX f f f f f f    , (17) 

Not only is the segment’s spectrum smeared, but it is smeared over an infinite extent, 
albeit with diminishing effect away from its center. 
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In addition, the smearing comes in the form a main lobe with offset discrete “bumps” in 
the spectrum separated by nulls.  These offset lobes are called “sidelobes” or “grating 
lobes.”  We also observe that the first sidelobes of the observed signal’s spectrum are 
only 13 dB less than the mainlobe peak.  Thereafter, sidelobes fall proportional at a 1 f  

rate.  Figure 1 illustrates this example with 0 2f    Hz in a 1-second aperture. 

Example 

Now consider as example the function where  x t  is the sum of two constant modulus 

rotating vectors 

  0 12 2
0 1

j f t j f tx t A e A e   , (18) 

where 

0f  = frequency of oscillation of first vector, 

1f  = frequency of oscillation of second vector, 1 0f f , 

0A  = amplitude of first vector, and 

1A  = amplitude of second vector. (19) 

With the same aperture as the previous example, the observed signal’s spectrum then 
becomes 

     0 0 1 1sinc sincaX f A f f A f f    . (20) 

Since this is a linear operation, superposition holds.  That is, the spectrum of the sum of 
individual signals is the same as the sum of the spectrums of the individual signals. 

What is important here is that if the two signal components have large disparate signal 
amplitudes, then the spectral contribution of the second lesser signal might be lost in the 
spectral sidelobes of the first, or dominant signal.  This suggests that it would be useful to 
suppress sidelobes in cases when 

1. Large dynamic ranges are expected, and 

2. The signal spectrum is complex, with multiple or distributed frequency content. 

Figure 2 illustrates this example with 0 2f    Hz, 0 3.5f   Hz, and 1A  less than 0A  by 

30 dB, all in a 1-second aperture. 
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Figure 1.  The red plot denotes the location and amplitude of the original constant-frequency signal.  
The blue curve is the spectrum of the observed segment of the original signal.  Note the generation of 
sidelobes due to the finite aperture employed to extract the observed signal segment. 

 
Figure 2.  The red plots denote the location and amplitude of the original sum of two constant-
frequency signals.  The blue curve is the spectrum of the observed segment of the composite original 
signal.  Note how the lower-amplitude signal is buried in the sidelobe of the stronger signal. 
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Note that in this example, the second signal is buried in the sidelobe of the first signal.  
While a perturbation of the sidelobe is observed that might seem to allow some degree of 
detection, we have thus far ignored noise and other data anomalies.  The question then 
remains “Are any sidelobe perturbations due to noise, measurement errors, signal channel 
effects, or are they due to real signals?” 

Therefore, it seems to become advantageous to employ signal processing techniques to 
lower sidelobes, even at the expense of other factors such as signal localization or 
resolution, i.e. mainlobe width. 

2.3 Sidelobe Causes 

It is a reasonable question to ask “What about a signal causes sidelobes?” 

The short answer is “any sharp edges or data discontinuities.”  A longer answer is given 
with the following analysis. 

We begin our analysis with a simple edge, namely a step function 

   
0 0

1 0

t
x t u t

t


   

 Heaviside unit step function. (21) 

In this case, we identify the Fourier Transform pair 

    1

2 2

f
u t

j f




 
  

 
. (22) 

From this we observe that spectral energy density exists out to  , simply due to the 
edge itself.  This is true even if we were to remove the DC bias, that is 

  1 1

2 2
u t

j f
    

. (23) 

This also means that to faithfully reproduce the sharp step, we need an infinite bandwidth 
of spectral information.  Finite bandwidth will reduce the fidelity of the reproduced step.  
The reduced fidelity will manifest as ringing in the region of the intended discontinuity.  
This is the well-known Gibbs phenomenon.  It in fact represents a sidelobe issue from a 
finite aperture in the other domain. 

Now let us soften the edge by creating a more gradual transition than the abrupt step of 
the unit step function. 

Before we proceed, it is useful to realize that 
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   
t

u t z dz


  . (24) 

We create the gradual, or tapered, transition with the function 

  1
rect

t
z

x t dz
 



   
  . (25) 

This function transitions linearly from a value of 0 to a value of 1 over an interval of 
length  centered at 0t  .  The spectrum of this function can be calculated to be 

     sinc

2 2

f f
X f

j f

 


 
  
 

. (26) 

We immediately observe that Eq. (26) shows less spectral energy at higher frequencies 
than the spectrum indicated in Eq. (22).  This is due to the additional frequency roll-off of 
the sinc function. 

From this we learn 

 A gradual transition means less high-frequency content to the spectrum. 

 The more gradual the transition, the quicker is the frequency roll-off in the 
spectrum. 

 We can only get rid of high-frequency content altogether if we have infinitely 
long transition regions. 

 Finite transition regions guarantee infinite spectral widths, with generally non-
zero spectral density out to infinity, nulls notwithstanding. 

 With finite transition regions, the best we can do is to reduce high-frequency 
content, but never eliminate it entirely (except for discrete nulls). 

We state without elaboration that other tapered transitional characteristics might have 
been chosen than indicated in Eq. (25), but would not have added substantively to the 
conclusions listed. 

The bottom line is that more gradual transitions, or tapers, reduce high-frequency content, 
which manifests as reduced sidelobes away from the spectral feature of interest. 

To repeat our assertion at the beginning of this section, the misplaced frequency content 
represented by sidelobes is caused by sharp edges or discontinuities in the data segment.  
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Of special concern to us are the discontinuities due to the edges of the aperture, even for 
an otherwise smooth signal. 

A smooth signal, such as a sinusoid, with infinite aperture will not generally exhibit 
sidelobes.  The moment an aperture becomes finite, sidelobes appear.  The shorter the 
aperture, the farther in frequency higher sidelobes extend. 

2.4 Window Tapers for the Aperture 

In previous sections we have considered an aperture to the signal of interest to be a 
rectangular function as indicated in Eq. (7).  We have noted that the abrupt edges of the 
signal segment from this aperture causes sidelobes that may interfere with detecting 
and/or characterizing signals buried within the sidelobes of larger nearby signals. 

Here we now substitute the rect function in Eq. (7) with a more generic “window” 
function which we define as 

 w z  = window taper function, (27) 

such that the observed signal segment is modified to 

    0
a

t t
x t x t w

T

   
 

  = observed segment of the desired signal function. (28) 

In signal processing practice, we normally select an observation interval with a rect 
function, and then apply the window taper during signal analysis.  In antenna pattern 
generation, however, the window taper is often built into the antenna electromechanical 
configuration.  The antenna community generally calls these tapers “shading.” 

The window functions we shall consider with rare exception are stipulated to have the 
following convenient properties. 

1.  w z  is real, even, and positive. 

2.  w z  is of finite length, defined over the interval  1 2,1 2 , with 

     rectw z w z z . (29) 

We stipulate  w z  is zero outside of the interval  1 2,1 2 . 

3.  w z  has unit DC gain.  This means 
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  1w z dz




 . (30) 

This also means that if any part of  w z , edges notwithstanding, is less than one, 

then  0 1w  . 

4.  w z  is non-increasing with distance from its center. This means 

   1 2w z w z  for 1 2z z . (31) 

Typically,  w z  slopes towards zero away from its peak value at  0w , but not 

necessarily at a constant rate.  More often, they do so smoothly.   

We caveat this discussion that the properties previously listed are typical of window taper 
functions employed in signal processing and other applications.  However, we 
acknowledge that for special applications, or for special purposes, that nearly any of the 
properties might be violated.  

Eq. (28) also implies that in the frequency domain, the segment has spectrum 

     02* j t
aX f X f Te W Tf , (32) 

where the window taper function exhibits the transform pair 

   w t W f . (33) 

We observe that  W f  is  the spectrum of the window function  w t .  In radar signal 

processing, where the raw signal is typically frequency or wavenumber data, the spectral 
response of the window itself is often called the window’s Impulse Response (IPR), or its 
Point Spread Function (PSF). 

It is important to remember that window taper functions are essentially just linear filters 
in the frequency domain of the raw original signal.  In fact, we may reap the sidelobe 
reduction effects of a window taper function by directly implementing the frequency-
domain convolution of Eq. (32), although the infinite width of  W f  would have to be 

dealt with, perhaps by truncation or cropping. 

Example 

The previous example that resulted in Figure 1 is repeated here, except that a window 
taper function is employed over the aperture of the original signal.  The window taper 
function is plotted in Figure 3.  The new spectral plot is given in Figure 4. 
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Figure 3.  The window taper function; specifically a 50 dB Taylor window (nbar=7).  

 
Figure 4.  Shown is the example of Figure 1, except that the segment has had applied a 50 dB Taylor 
window (nbar=7). 
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Figure 5.  Shown is the example of Figure 2, except that the segment has had applied a 50 dB Taylor 
window (nbar=7). 

We note that sharp discontinuities have been reduced in the aperture.  In addition, we see 
that sidelobes are reduced in the spectrum but at the expense of a broader mainlobe.  This 
is often considered a good trade. 

Example 

If we consider the two signals that yielded the spectrum of Figure 2, but now apply the 
window taper function of Figure 3 to the aperture, then the resulting spectrum is shown in 
Figure 5.  Note that now there is no problem discerning the smaller second signal, even 
though it is 30 dB below the first signal, and relatively near in frequency. 

2.5 Characteristics of Window Function Frequency Response 

A window taper function with the properties listed previously in section 2.4 will generate 
a frequency response with the general characteristics that include 

1.  W f  will be real and typically even, but not always, and not always positive. 

2.  W f  will be of infinite length, defined over the interval  ,  . 

3.  W f  will have a distinct mainlobe. 
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Figure 6.  Major regions of the frequency response of a window taper function.  The window whose 
spectrum is displayed is the same 50 dB Taylor window (nbar = 7) displayed in Figure 3, but 
quantized in magnitude to about 200 different levels.  Only the positive frequencies of the frequency 
response are displayed with a logarithmic frequency axis. 

 

Note that we are talking about continuous window taper functions, and not discrete-time 
window taper functions, whose properties might vary somewhat from these. 

Figure 6 exemplifies a window taper function spectrum, and identifies several key 
regions to the spectrum.  Different window functions trade between the characteristics of 
these various regions.  In fact, not all window function spectra even exhibit all of these 
specific characteristics.  Choosing a particular window function should be done with 
these trades in mind; with some assessment of which features are most important to the 
application at hand.  We discuss these regions now. 

Mainlobe 

The peak of the frequency response is expected to be at  0W , and  W f  will 

attenuate with frequency offset from this, usually towards a null in the overall response.  
This region is the main lobe of  W f .  The mainlobe is typically characterized by 

various “width” measures, including one or more of the following: 
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3 dB width 

K dB width, where K is some other arbitrary attenuation 

half-power width, which is ever so slightly different than 3 dB  width 

noise-equivalent width, a measure of how much noise the window passes 

Essentially, this is a bandwidth measure, so any specific bandwidth metric might also be 
used to characterize the mainlobe width of the window frequency response. 

Note that the noise-equivalent width is often treated as a Signal-to-Noise Ratio (SNR) 
loss for using a window taper function, with the loss being with respect to using no 
window function at all. 

Near-in Sidelobes 

These are the sidelobes in the near vicinity of the mainlobe.  For  W f  being a sinc 

function, these are the sinc function sidelobes that are intolerably too high, and need to be 
suppressed, or at least reduced to acceptable levels. 

One of the most important window design/selection trades is mainlobe widening at the 
expense of near-in sidelobe suppression. 

Sidelobe Taper Region 

Beyond the near-in sidelobes, we generally expect the sidelobes’ magnitude to fall off as 
frequency offset increases.  We define this as the sidelobe taper region.  The rate of fall-
off depends on the specific window taper function employed, and will generally be some 
low power of 1/ f .   Note that 1/ f  corresponds to 6 dB per octave.  If the actual 

window taper function endpoints do not smoothly arrive at zero, then generally the 
sidelobe taper will be no better than 6 dB per octave. 

For a continuous window taper function, energy constraints require the sidelobe taper to 

ultimately be at a rate faster than 1 / f , or 3 dB per octave (i.e. 10 dB/decade). 

Far-out Sidelobe Floor 

As sidelobes fall off in the taper region, they eventually reach a level at which they 
become inconsequential to our purposes, and can be tolerated at that level for an 
indefinite frequency offset from the peak response.  Although not structural to the 
window taper function itself, system imperfections, and imperfections in arithmetic 
calculations such as due to quantization effects, might limit the floor that is in fact 
achievable.  We of course generally desire the achievable floor to be below the 
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inconsequential level.  Nevertheless, we must recognize that there are realistic limits to 
how well sidelobes can be suppressed, practically resulting in a far-out sidelobe floor. 

2.6 Discrete-Time Window Taper Functions 

When working with discrete data samples, a window taper function will also typically be 
a sampled version of the continuous-time function.  Accordingly, we identify discrete 
window taper function sample values as 

  1

1 2N
n

w n w
N

    
 = discrete-time window taper function values, (34) 

where the time index values of the discrete samples are integer values 

0 1n N   . (35) 

A consequence of selecting discrete weights this way is that Eq. (30) now becomes 

 
1

0

N

N
n

w n N



 , for large N. (36) 

While equality will not strictly hold, as N increases, the sum of the weights gets closer to 
N.  Of course, the weights may be scaled ever so slightly to force equality.  Nevertheless, 
for all intents and purposes, for most windows and any reasonably sized N, equality may 
typically be presumed.  Thus, the DC gain for a discrete-time window taper function as 
defined is effectively N. 

While Eq. (34) describes how a continuous window taper function may be sampled to 
create a Discrete-Time window taper function, we stipulate that other sampling schemes 
might also be employed.  For example, we might wish to divide the window into N equal-
sized segments and select the center of each segment to yield 

  1

2N
n N

w n w
N N

   
 

. (37) 

Otherwise, we may alternatively wish to select an average value over the individual 
segments by calculating 

   

2 1

2

n N

N

N
n N

N

w n N w t dt

  
 
 

 
 
 

  . (38) 
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Other schemes can also be easily conjured.  All converge to the same answer as N  .  
Hereafter, we will generally assume to employ Eq. (34) and its consequences out of 
convenience. 

With this scheme, we identify 

 1

T
T

N 


 = the time-sample spacing, and 

1
sf T
  = the time-sampling frequency. (39) 

We note that for a unit-width aperture, where 1T  , then N samples spread from end to 
end over this aperture implies that 

1sf N   ,   for a unit-width aperture. (40) 

The Discrete-time Fourier Transform (DFT) of the sampled window taper function data is 
calculated as 

   
1 2

0

kN j n
K

K N
n

W k w n e
 


  , (41) 

where the frequency index is nominally 

0 1k K   . (42) 

Although this is the nominal span for index k, with frequency itself mapped to 

s
k

f f
K

 . (43) 

it should be appreciated that the nature of the spectra of sampled data is such that the 
spectra repeat so that we may in fact use indices outside the range specified in Eq. (42).  
This is the well-known phenomenon of sampled-data periodic spectra.11  In fact, we may 
extend to an arbitrary integer index k by stipulating that 

   K KW k K W k  , for all k. (44) 

As a consequence, any set of K contiguous DFT output samples will completely specify 
the frequency response of the time-sampled window taper function. 

It is also convenient to recognize the frequency-sample spacing 
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sff
K   = frequency-sample spacing, and 

1
aT

f
  = time-interval represented by frequency-sample spacing. (45) 

Another consequence of a periodic spectrum is that any particular frequency sample 

 KW k  contains energy not only from the desired nominal frequency associated to it by 

Eq. (43), but also from any frequencies aliased to it.  As a practical matter, this will 
impact the degree to which far-out sidelobes can be suppressed, regardless of the 
characteristics of the corresponding continuous-time window taper function spectrum, 
often in a manner that depends somewhat on N. 

It should be obvious from aliasing characteristics, that regardless of the specific window 
taper function, as frequency increases and crosses the 2sf  mark, sidelobe levels cease 

declining, and necessarily begin growing again as we approach the duplicate mainlobe 
centered at frequency sf .   

Nevertheless, near the mainlobe peak, for k K , 

  1
K

N
W k N W k

K

   
 

,  for small k. (46) 

Example 

Consider the spectrum of a continuous window taper function, along with its sampled 
version with 128 samples. Figure 7 illustrates the frequency range between DC and the 
sampling frequency. 

Note that while the spectrum of the continuous window keeps tapering to the right as we 
might desire and expect, the spectrum of the sampled window agrees closely only for a 
small fraction of the displayed frequency band near the mainlobe, and displays actually 
increasing spectral density after 2sf  towards the replicated mainlobe at sf . 

Windowing Periodic Functions 

When a function is known to be periodic over N samples, we are given to understand that 
although our sample set is for indices  0 : 1N  , index values outside this range yield 

   N Nx n N x n  . (47) 
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Figure 7. Spectrum differences for sampled window versus continuous window.  Both are a 50 dB 
Taylor window (nbar=7).  Only positive frequencies are shown.  Sampled window uses 128 samples. 

 

Specifically, we understand that 

   0N Nx N x . (48) 

In this case, we would employ a discrete-time window taper function where 

   0N Nw N m w m   ,    for integer values of m. (49) 

This suggests that Eq. (34) for such periodic signals becomes 

  1

2N
n

w n w
N

   
 

. (50) 

In this case, we identify 

T
T

N   = the time-sample spacing. (51) 

This idea will come into play for those window taper functions that are specified by, and 
calculated from, their spectra.  We refer the reader to Appendix A for details. 



- 28 - 

 

2.7 Window Taper Function Metrics 

Here we address a number of different, but often related metrics for window taper 
functions and their spectra. 

As prelude to this section, we identify Energy Spectral Density (ESD) of the continuous 
window taper function as 

  2
W f  = Energy Spectral Density. (52) 

From Parseval’s theorem, we understand that 

   2 2
W f df w t dt

 

 

  . (53) 

Recall that we have defined window taper functions such that 

  1w t dt




 . (54) 

Likewise, for the spectrum of the sampled window taper function, 

   
1 1

2 2

0 0

1 K N

K N
k n

W k w n
K

 

 
  . (55) 

Recall also that we have defined discrete-time window taper functions such that 

 
1

0

N

N
n

w n N



 . (56) 

For the following discussions, we will normalize all width and frequency offset 
measurements to 1 T , where 

T = the window width, (57) 

which we have heretofore assumed to be unity.  To calibrate ourselves, among other 
things, 1 T  is the distance from peak to first null for a sinc function frequency response. 
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2.7.1 Half-Power Mainlobe Width 

This metric is the width of the mainlobe where 

   2 2
1

1
0

2
W f W . (58) 

Assuming symmetry, the width of the mainlobe is then calculated as 

, 12w hpa f . (59) 

For a sampled window taper function, we interpolate to find the smallest fractional index 
where 

   2 2
1

1
0

2K KW k W . (60) 

The width of the mainlobe is then calculated as 

, 12w hp
N

a k
K

 . (61) 

For a sinc function, ,w hpa   0.88588. 

2.7.2 3 dB Mainlobe Width 

While 3 dB is often presumed to be half power, it isn’t exactly so.  Accordingly, this 
metric is the width of the mainlobe where 

   
3

2 210
1 10 0W f W

 
 
 
 

. (62) 

Assuming symmetry, the width of the mainlobe is then calculated as 

, 3 12w dBa f  . (63) 

For a sampled window taper function, we interpolate find the smallest fractional index 
where 

   
3

2 210
1 10 0K KW k W

 
 
 
 

. (64) 
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The width of the mainlobe is then calculated as 

, 3 12w dB
N

a k
K  . (65) 

For a sinc function, , 3w dBa    0.88448. 

2.7.3 M dB Mainlobe Width 

We often wish to find the mainlobe width farther down its sides, at perhaps some other 
power ratio.  Accordingly, this metric is the width of the mainlobe for some arbitrarily 
relative power level M, where 

   2 210
1 10 0

M

W f W
 
 
 
 

,      for 0M   in units of dB. (66) 

Assuming symmetry, the width of the mainlobe is then calculated as 

, 12w MdBa f . (67) 

For a sampled window taper function, we interpolate find the smallest fractional index 
where 

   2 210
1 10 0

M

K KW k W
 
 
 
 

. (68) 

The width of the mainlobe is then calculated as 

, 12w MdB
N

a k
K

 . (69) 

A typical value for radar signal processing is 18M    dB.  We must be cognizant, 
however, that for very negative values of M, spectral sidelobes will pop up above this 
level.  Therefore, some ambiguity exists in whether this metric applies to just the 
mainlobe, or also to the farthest sidelobe that meets this criterion. 

For a sinc function, for the mainlobe only, and neglecting any sidelobes, 

, 18w dBa    1.7721. 
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2.7.4 Noise-Equivalent Mainlobe Width 

This metric answers the question “What equivalent ideal-filter bandwidth will pass the 
same noise power as the window taper function spectrum, assuming White Gaussian 
Noise (WGN) is input?”  That is, we wish to find two-sided bandwidth ,w noisea   such that 

   2 2
,0 w noiseW a W f df





  . (70) 

This may be calculated as 

 
  2

, 2

1

0
w noisea w t dt

W





  . (71) 

For a sampled window taper function, we may calculate this as 

 
 

1
2

, 2
00

K

w noise K
kK

N K
a W k

W




  . (72) 

For our window taper function definitions, this becomes 

 
1

2
,

0

1 N

w noise N
n

a w n
N




  . (73) 

This number, for most window functions, will typically somewhat larger than the half-
power, or 3 dB mainlobe widths. 

For a sinc function, ,w noisea   1.0. 

2.7.5 SNR Gain/Loss 

The noise-equivalent mainlobe width calculated in the previous section is often utilized 
as a loss in SNR of a signal.  The loss is calculated as 

,window w noiseL a . (74) 

In terms of dB, this becomes 

 , 10 ,10 logwindow dB w noiseL a . (75) 

For a sinc function, ,window dBL  = 0. 
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2.7.6 First-Null Offset 

The first null is the null nearest to the mainlobe peak.  It is the smallest 1f  to yield 

  2
1 0W f  . (76) 

Note that first nulls occur at both 1f .  Accordingly, we may also define a null-to-null 

mainlobe width to be 

, 12w null to nulla f   . (77) 

For a sampled window taper function, we interpolate to find the smallest fractional index 
where 

  2
1 0KW k  . (78) 

We may correspond this fractional index to a frequency-offset for the null with the 
relationship 

1 1
N

f k
K

 . (79) 

The width of the mainlobe is then calculated as 

, 1 12 2w null to null
N

a f k
K    . (80) 

For a sinc function, 1f   1.0, and ,w null to nulla    = 2.0. 

2.7.7 Peak Sidelobe Level (PSL) 

Sidelobes are by definition energy in the frequency response of the window taper 
function in the sidelobe regions located beyond the first null (both positive and negative). 

The peak sidelobe level answers the question “What is the minimum attenuation 
achievable for an interfering narrow-band source not in the mainlobe?” 

The peak sidelobe level for a frequency response may be found by looking for the peak 
frequency response beyond the first null.  It is furthermore related to the mainlobe peak.  
Accordingly, for a continuous window function’s spectrum 
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  
 

1

max

0

f f
W f

PSL
W


 , (81) 

where 1f  is the first null.  Since we have opted to define the DC gain of the continuous 

window taper function to be unity, we may identify  0 1W  . 

For a sampled window taper function, we interpolate to find the peak value of the first 
sidelobe beyond the first null, but limited to frequencies corresponding to less than 2sf

, owing to the periodic nature of sampled signal spectra.  This constrains the index to 

1 2k k K  , where 1k  is the first null.  Accordingly, 

  
 

1 2
max

0

K k k K

K

W k
PSL

W

 
 . (82) 

Since we have opted to specify the DC gain of the discrete-time window taper function to 
be N, we may identify  0W N . 

For both continuous and discrete-time window taper functions, the PSL is typically 
expressed in dB.  Consequently, we calculate 

 1010logdBPSL PSL . (83) 

For a sinc function, dBPSL 13.26 dB.   

2.7.8 Integrated Sidelobe Level (ISL) 

The integrated sidelobe level answers the question “What fraction of the window taper 
function’s spectrum’s energy is in the sidelobes?” 

It further answers the question “What minimum attenuation might we expect for a 
broadband white-spectrum interference source outside of the mainlobe response?” 

In radar imaging systems, this is a source of multiplicative noise, and contributes to the 
Multiplicative Noise Ratio (MNR). 

Accordingly, for a continuous window function’s spectrum 
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







, (84) 

where 1f  is the first null.  Using Eq. (53), this may also be written as 

 
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. (85) 

Using previous results, specifically Eq. (70), we may also write this as 
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,
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For a sampled window taper function, we may calculate 
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, (87) 

where 1k  is the first null.  Summation is limited to integer index values.  Using Eq. (55), 

and symmetry properties, this may be calculated as 
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


. (88) 

Using also Eq. (73), this may also be written as 
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




. (89) 

For both continuous and discrete-time window taper functions, the ISL is typically 
expressed in dB.  Consequently, we calculate 

 1010logdBISL ISL . (90) 

For a sinc function, dBISL 9.68 dB.   

We offer that these relatively high levels for ISL and PSL render the sinc function 
unattractive as a frequency response, and the rect function thereby as deficient as a 
window taper function.  This is the reason other taper functions were developed in the 
first place. 

2.7.9 Sidelobe Asymptotic Taper Rate 

The sidelobes will fall off in the sidelobe taper region of the frequency response at a rate 
that depends on how continuous is the window function, including the transition to a 
constant zero at its edges.   

Generally, a discontinuity in the nth derivative of the window taper function  w t  will 

cause a  6 1n   dB per octave asymptotic roll-off of the sidelobes.  A roll-off of 6 dB 

per octave equates to 10 dB per decade, which equates to a 1 f  rate. 

We see this from the following analysis.   

Recall that for a transform pair 

   w t W f , (91) 

then if the nth derivative exists, basic Fourier Transform properties give us that 

     2
n

n
n

d
w t j f W f

dt
 . (92) 

A discontinuity in the nth derivative, where the nth derivative is still finite, means that the 
right side of Eq. (92) still falls off at a 1 f  rate, to keep the energy in the right-side 

function finite.  This, of course, means that the spectrum  W f  itself must fall off at a 
1

1
n

f
  rate.  
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Figure 8.  Richard Wesley Hamming (February 11, 1915 – January 7, 1998), inventor and namesake 
of the Hamming window taper function, among many other achievements.  (image courtesy 
Wikipedia) 
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3 Picking a Window Taper Function 

The selection of a particular window taper function is typically an exercise in making 
engineering trades with respect to window spectrum characteristics.  That is, the “perfect” 
taper is generally not achievable, so the correct taper is one that is “good enough.”  The 
system designer must first ascertain acceptable limits of degradation with respect to the 
following characteristics 

1. Mainlobe broadening, i.e., spectral resolution,  

2. Noise bandwidth, or SNR loss, 

3. Near-in PSL, 

4. Spectral sidelobe taper rate, 

5. Far-out sidelobe level, 

6. ISL, 

7. Length-limits of the window,  

8. Ease of generation. 

Often, the priority of the required characteristics will be driven by the application. i.e. 
whether the intended use is for spectral estimation, filter design, interpolation, etc. 

In any case, there are a myriad of window taper functions from which to choose, and an 
infinite set of variations in their ability to be “tuned.” 

What follows is a catalog of some of the more popular window taper functions, and 
families of functions. 
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Figure 9.  Julius Ferdinand von Hann (23 March 1839 – 1 October 1921), Austrian meteorologist and 
namesake of the Hann window taper function.  (image courtesy Wikipedia) 
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4 Window Taper Functions 

In the following we present characteristics of various window taper functions, 
specifically parameters of their spectral nature. 

We stipulate that the measured parameters were for discrete-time window functions with 
the following common characteristics. 

1. All window functions used N = 16,384 samples, unless otherwise noted. 

2. All window spectra were calculated for 256K N  frequency samples. 

3. All discrete-time window functions were normalized to a DC signal gain of N, 
where the DC frequency yields a spectrum magnitude of N. 

4. All frequency width and frequency offset values are normalized to a unit time 
interval T, that is a frequency increment of 1/T. This is the distance from peak to 
first null for a sinc function frequency response. 

5. Any interpolation uses linear interpolation between integer-index samples. 

6. All frequency spectrum plots will be normalized to the peak value, and scaled in 
dB with respect to the peak value (dBc). 

 

We stipulate that the following listing is incomplete.  Essentially, any function that 
exhibits a mainlobe can be used as a window taper function.  Many functions furthermore 
allow adjustments via parameter manipulation.  Furthermore yet, many of these can be 
combined in an infinite set of relative scaling, yielding a further expansion of the 
universe of window taper functions. 

The literature often describes the same window taper function with different names.  In 
addition, we also find sometimes the same name get applied to fundamentally different 
window taper functions. 

We suggest the reader wishing to select a window taper function practice “caveat 
emptor.” 
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4.1 Rectangle (a.k.a. Boxcar, Dirichlet, Uniform) 

The Rectangle, or Rectangular, window taper function is equivalent to no window at all. 

The continuous time window taper function is given as 

   rectw t t , (93) 

where the rect function is defined as in Eq. (4). 

The Fourier Transform of the continuous time window taper function is given as 

   sincW f f , (94) 

where the sinc function is defined as in Eq. (5). 

The DFT of a sampled window taper function is calculated to be 

 
 

 

sin 1 cos

1 sin
K

k k
N

K K
W k N

k
N

K

 



            
       

, (95) 

where we have ignored the group-delay phase term.  We note the cosine factor is a 
consequence of the rect function definition in Eq. (4). 

Note that for small k, this can be approximated as 

  1
sincK

N
W k N k

K

   
 

, (96) 

with the mainlobe region approaching the shape of Eq. (94).  This is a consequence of 
Eq. (46). 

Plots and characteristics are given in Figure 10.  Note that sidelobes fall off at a rate of  
6 dB per octave. 

The Rectangle window taper function is the baseline to which all others are typically 
compared. 
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Figure 10. 
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4.2 Triangle (a.k.a. Bartlett) 

The Triangle, or Triangular, window taper function is defined with form scaled for unit 
DC gain as 

       2 1 2 rect 2 2w t t t t    , (97) 

where the triangle function is defined as 

   1 rect
2

x
x x

     
 

. (98) 

Bartlett described this window function in an early paper.12 

The Fourier Transform of the continuous time window taper function is calculated as 

  2sinc
2

f
W f

   
 

. (99) 

Plots and characteristics are given in Figure 11.  Note that sidelobes fall off at twice the 
rate of the Rectangle window, namely at a rate of 12 dB per octave. 

The Triangle window is a member of a family of window taper functions known as  
“B-spline windows.”  These are functions that can be derived from convolving a M 
identical rect functions together.  Specifically, the Triangle window taper function is a 2nd 
order  2M   B-spline window, suitably compressed in time and scaled in amplitude to 

meet the unit width and unit DC gain characteristics. 

Harris4 also identifies this as a Fejér window, but we will reserve this name for a different 
kernel based on an earlier source. 
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Figure 11. 
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4.3 Parzen  

The Parzen13 window taper function is defined with form scaled for unit DC gain as 

 

 
 

2 3

2 3

1 4
8

1 24 48
3

8
2 12 24 16

3
1 4 1 2

0

t

w

t t

tt t

el

t

e

t

s

    
 
  







    
 






. (100) 

This particular window characteristic was first suggested orally by Parzen at an Institute 
of Mathematical Statistics (I.M.S.) Annual Meeting in 1957.13 

The Fourier Transform of the continuous time window taper function is calculated as 

  4sinc
4

f
W f    

 
. (101) 

Plots and characteristics are given in Figure 12.  Note that sidelobes fall off at four times 
the rate of the Rectangle window, namely at a rate of 24 dB per octave. 

The Parzen window is a member of a family of window taper functions known as  
“B-spline windows.”  These are functions that can be derived from convolving a M 
identical rect functions together.  Specifically, the Parzen window taper function is a 4th 
order  4M   B-spline window, suitably compressed in time and scaled in amplitude to 

meet the unit width and unit DC gain characteristics.  It can also be formed by 
convolving two identical triangle functions together, suitably compressed in time and 
scaled in amplitude to meet the unit width and unit DC gain characteristics. 

Harris4 also identifies this as a de la Vallée Poussin, or Jackson, window, but we will 
reserve these names for a different kernel based on an earlier source. 
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Figure 12.  
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4.4 General B-Spline 

The B-spline family of window taper function is generated by convolving some M 
number of identical rect functions together,  

  1 2rect *rect * ... *rectM
t t t

w t
M M M

                   
, (102) 

where we identify 

M  = the order, or number of rect functions convolved together. (103) 

The Rectangle, Triangle, and Parzen window taper functions of the previous sections are 
just B-spline windows with M = 1, 2, and 4, respectively. 

 

For 3M  , the window is described by 
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. (104) 

 

For 5M  , the window is described by 
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 (105) 
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The Fourier Transform of the continuous time window taper functions are calculated as 

  sincM f
W f

M
   
 

. (106) 

Plots and characteristics are given in Figure 13 and Figure 14, for 3M   and 5M   
respectively.  Note that sidelobes fall off at M times the rate of the Rectangle window. 
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Figure 13. 
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Figure 14.  
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4.5 Welch (a.k.a. Riesz, Bochner, Parzen) 

The Welch14 window taper function is a member of a family of Polynomial window taper 
functions.  Specifically, it is an inverted parabola with form scaled to provide unit DC 
response as 

     23
1 4 rect

2
w t t t  . (107) 

The Fourier Transform of the continuous time window taper function is calculated as 

     
3 3

3sin 3 cosf f f
W f

f

  



 . (108) 

Plots and characteristics are given in Figure 15. 

 

Harris4 calls this a Riesz window, but references Parzen.13 
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Figure 15. 
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4.6 Connes 

This window taper function is a member of a family of Polynomial window taper 
functions.  Specifically, it is the square of an inverted parabola with form scaled to 
provide unit DC response as 

 
 

 
22 2

4

4
rect

t
w t A t






 , (109) 

with parameter 

0  , but more typically 1  , and often just 1  . (110) 

and with scale factor 

4

2 4

15

3 10 15
A


 


 

, (111) 

The Fourier Transform of the continuous time window taper function is calculated as 

 
 

        

       

22 42 2

54 22

24 4 3 1 sin

4 6 1 cos

f f f
A

W f
f f f f

    

     

          
     

. (112) 

Plots and characteristics for a sample family member are given in Figure 16. 

Several sources describe the Connes window, including Anterrieu, et al.6 
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Figure 16. 
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4.7 Parzen Algebraic Family 

Parzen15 also proposed a generalized window characteristic, that he called an Algebraic 
Family of windows, with form that we scale to provide unit DC response as 

     1 2 rect
u

w t A t t  , (113) 

where parameters are constrained to 

0 1  , and 
0u  , (114) 

and with scale factor 

1

1
1

A
u

 
    

. (115) 

The Welch window taper function of the previous section is simply the case where 1   
and 2u  . 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Figure 17 illustrates the arbitrary case for 0.95   and 1.35u  . 

 

Parzen1 additionally presents a Cosine Family, Exponential Family, and Geometric 
Family of window functions.  These will be discussed later. 
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Figure 17. 
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4.8 Singla-Singh Polynomial 

Any number of polynomials might be used to generate all manner of window taper 
functions.  We present here but one example, from Singla and Singh,16 with form scaled 
for unit DC gain as 

      22 1 4 3 4 rectw t t t t   . (116) 

The Fourier Transform of the continuous time window taper function is calculated as 

      4 4

12
2 2cos sinW f f f f

f
  


   . (117) 

Plots and characteristics are given in Figure 18. 

Singla and Singh present several others. 
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Figure 18. 
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4.9 Sinc Lobe (a.k.a. Riemann, Daniell) 

This window taper function is defined as the central lobe of the sinc function.  As such, 
scaled for unit DC gain, we identify 

     sinc 2 rectw t A t t , (118) 

where we numerically calculate 

A   1.69638. (119) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  Consequently, we simply identify it as 

   
1 2

2

1 2

sinc 2 j ftW f A t e dt



  , (120) 

but note that this can be written as the convolution 

   rect *sinc
2 2

A f
W f f   

 
. (121) 

Plots and characteristics are given in Figure 19. 

Harris4 calls this a Riemann Window, referencing Bary.17 

Parzen13 associates this window with Daniell. 

Some references also call this a Lanczos window, although others use this name as a 
family of windows of which the Sinc Lobe is merely a specific member.  We will 
proceed in this report with the latter definition. 
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Figure 19. 
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4.10 Fejér 

This window taper function is defined by Achieser18 as the central lobe of the sinc 
function squared.  As such, scaled for unit DC gain, we identify 

     2sinc 2 rectw t A t t , (122) 

where we numerically calculate 

A   2.21527. (123) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  Consequently, we simply identify it as 

   
1 2

2 2

1 2

sinc 2 j ftW f A t e dt



  , (124) 

but note that this can be written as the convolution 

   *sinc
2 2

A f
W f f    

 
. (125) 

Plots and characteristics are given in Figure 20. 
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Figure 20. 
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4.11 de la Vallée Poussin (a.k.a. Jackson) 

This window taper function is defined by Achieser18 as the central lobe of the sinc 
function to the fourth power.  As such, scaled for unit DC gain, we identify 

     4sinc 2 rectw t A t t , (126) 

where we numerically calculate 

A   3.00886. (127) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  Consequently, we simply identify it as 

   
1 2

4 2

1 2

sinc 2 j ftW f A t e dt



  . (128) 

We note that this may be written as a convolution of two triangle functions and a sinc 
function. 

Plots and characteristics are given in Figure 21. 
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Figure 21. 
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4.12 Lanczos 

Proakis and Manolakis19 define this window as a family of windows that are a Sinc Lobe 
to some positive power.  Accordingly, we identify the Lanczos window, scaled for unit 
DC gain, as 

     sinc 2 rectLw t A t t , (129) 

where we identify the parameter that specifies the power as 

0L  . (130) 

We numerically calculate the gain parameter as 

 
1

1 2

1 2

sinc 2LA t dt





 
 
 
 
 . (131) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  Consequently, we simply identify it as 

   
1 2

2

1 2

sinc 2L j ftW f A t e dt



  . (132) 

We note that especially if L is an integer value, this may be written as a convolution of 
multiple rect functions, perhaps triangle functions, and a sinc function. 

We note that the Lanczos family of window taper functions includes the following 
members previously discussed 

 Sinc Lobe, for L = 1, 

 Fejér, for L = 2, and 

 de la Vallée Poussin, for L = 4. 

Plots and characteristics for 3L   are given in Figure 22. 
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Figure 22. 
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4.13 Hamming 

The Hamming window is defined as a particular member of a family of “raised cosine” 
functions of the form scaled for unit DC gain with 

       1
1 cos 2 rectw t t t





 

  
 

. (133) 

In particular, for the Hamming window, the parameter  is chosen to minimize the PSL, 
which causes us to select 

25

46
  , (134) 

although more often this is rounded to 

0.54  . (135) 

The Fourier Transform of the continuous time window taper function is calculated as 

           1 1
sinc sinc 1 sinc 1

2 2
W f f f f

 
 
  

     
 

. (136) 

Plots and characteristics are given in Figure 23.  Note that sidelobes fall off at a rate of  
6 dB per octave due to the residual discontinuity at the window ends. 

The Hamming window is named after American mathematician Richard Wesley 
Hamming. 

The earliest discussion of the benefits of spectral smoothing with what is later named the 
Hamming window is in an unpublished memorandum by Tukey and Hamming.20 
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Figure 23.  



- 68 - 

 

4.14 Hann (a.k.a. Hanning) 

The Hann window is defined as a particular member of a family of “raised cosine” 
functions of the form scaled for unit DC gain with 

       1
1 cos 2 rectw t t t





 

  
 

. (137) 

In particular, for the Hann window 

1

2
  , (138) 

chosen to maximize the asymptotic sidelobe taper rate.  The Hann window may also then 
be written as 

          21 cos 2 rect 2cos rectw t t t t t    . (139) 

As such, it is also a member of the “Power-of-cosine” (cosm) window family. 

As with the Hamming window, the Fourier Transform of the continuous time window 
taper function is calculated as 

           1 1
sinc sinc 1 sinc 1

2 2
W f f f f

 
 
  

     
 

. (140) 

Plots and characteristics are given in Figure 24.  Note how the sidelobes fall off at a fairly 
steep 18 dB per octave. 

The Hann window is named after Austrian meteorologist Julius Ferdinand von Hann in 
an early reference by Blackman and Tukey.8 
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Figure 24.  
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4.15 Generalized Raised Cosine 

The Generalized Raised Cosine window is defined as a family of “raised cosine” 
functions of the form scaled for unit DC gain with 

       1
1 cos 2 rectw t t t





 

  
 

, (141) 

where we might choose the parameter  in the range 

1 2 1  . (142) 

Specific values of  yield Hamming, Hann, or even Rectangular window taper functions.  
However, other values of  might be used.  Various  generally trade between PSL and 
the sidelobe taper rate.   

The Fourier Transform of the continuous time window taper function is calculated as 

           1 1
sinc sinc 1 sinc 1

2 2
W f f f f

 
 
  

     
 

. (143) 

Plots and characteristics are given in Figure 25 for 0.6  . 

This window taper function is also sometimes called a “Generalized Hamming” window, 
although we will attribute this name to a different formulation. 
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Figure 25.  
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4.16 Generalized Hamming (a.k.a. Webster-Hamming) 

The concept of a “generalized Hamming” window taper function was proposed by 
Webster,21 who asserted a form which we scale for unit DC gain as 

          2cos 1 cos rectv vw t A t t t      , (144) 

where we select the parameter  as 

2

2

2 3

23 9

v v

v v
  


 
, (145) 

and the power to which the cosines are raised is defined by parameter 

1 2v   , (146) 

with gain parameter calculated as 

 

4
2

2
1

1
2

v

A
v

v





  
 

    
 

. (147) 

The specific value 0v   yields the traditional Hamming window taper function.   

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Plots and characteristics are given in Figure 26 for 1.0v  . 
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Figure 26. 
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4.17 Power-of-Cosine (a.k.a. Cosm) 

The generalized Power-of-Cosine window is defined as a family of functions of the form 
scaled for unit DC gain as 

     
1

2
cos rect

1
2 2

m

m

w t t t
m




       
       

, (148) 

where  

m  integer values, 0m   , and 

 z  =  gamma function. (149) 

   

The case for 0m   yields the Rectangle window. 

The case for 1m   is sometimes called a “Cosine Lobe” window, and is plotted in Figure 
27. 

The case for 2m   yields the Hann window. 

The Fourier Transform of the continuous time window taper function for arbitrary m is 
not readily calculated in closed-form.  It may be numerically calculated for specific 
parameters, i.e. using a DFT on discrete-time samples of the window function. 

Plots and characteristics are given in Figure 28 for 3m  . 

Plots and characteristics are given in Figure 29 for 4m  . 

As m increases, sidelobes decrease, sidelobe taper gets steeper, but mainlobe width 
increases. 

Although m is commonly specified to be an integer, we observe that non-integer values 
of m are also feasible, and might offer utility, too. 
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Figure 27. 
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Figure 28. 
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Figure 29.  
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4.18 Raised Power-of-Cosine (a.k.a. General Cosine-Power) 

The power-of-cosine window function of the previous section might be added to a rect 
function to yield a “raised power-of-cosine” window.22  This window has the form scaled 
for unit DC gain as 

        1 cos rectmw t A t t     , (150) 

where  

  =  fractional ratio of pedestal for window, 0 1  ,  
m  integer values, 0m  , (151) 

and the unit gain scale factor is 

1
1

(1 )
2

1
2

m

A
m







          

       

. (152) 

The case for 0   yields the power-of-cosine window of the previous section, and the 
case for 1   yields the rectangle window. 

The Fourier Transform of the continuous time window taper function for arbitrary m is 
not readily calculated in closed-form.  It may be numerically calculated for specific 
parameters, i.e. using a DFT on discrete-time samples of the window function. 

Plots and characteristics are given in Figure 30, Figure 31, and Figure 32 for various 
parameter combinations. 

Although m is commonly specified to be an integer, we observe that non-integer values 
of m are also feasible, and might offer utility, too. 
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Figure 30. 
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Figure 31. 
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Figure 32. 
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4.19 Parzen Cosine Family 

Parzen1 suggested a family of window taper functions of the form, which we have 
transmogrified and scaled for unit DC gain as 

      1 cos 2 rect
m

w t A t t   , (153) 

where  

0 1   , and 
0m  , not necessarily an integer,  (154) 

with the unit DC gain scale factor calculated to be 

  
1

1 2

1 2

1 cos 2
m

A t dt 





 
  
 
 
 . (155) 

The Fourier Transform of the continuous time window taper function for arbitrary m is 
not readily calculated in closed-form.  It may be numerically calculated for specific 
parameters, i.e. using a DFT on discrete-time samples of the window function. 

Example plots and characteristics are given in Figure 33 for a sample parameter 
combination. 

 

 



- 83 - 

 

 
Figure 33.  
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4.20 Bohman (a.k.a. Papoulis) 

A Cosine Lobe window convolved with itself is known as the Bohman window.23 

Its form scaled for unit DC gain is 

         
2

1 2 cos 2 sin 2 rect
4 4

w t t t t t
  

 
    
 

, (156) 

The Fourier Transform of the continuous time window taper function is calculated as 

 
 

2

22

cos
2

1

f
W f

f

 
 
 


. (157) 

 
Papoulis showed that this window is optimum in minimizing bias in spectral estimation.24 

Plots and characteristics for this window are given in Figure 34. 
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Figure 34.  
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4.21 Trapezoid 

The Trapezoid window is something between a Rectangle window and a Triangle 
window.  It has a flat center section, and linear tapers towards the edges.  It is a 
parametric window, with the form scaled for unit DC gain as 

   
 2

2

1 2

2 1 2
1 2

1 2

0 1 2

t

t
w t t

t








 





  



 


, (158) 

where the taper parameter is the offset from aperture center specified as 

0 1 2  . (159) 

The window can also be constructed as the difference between two triangle functions. 

The Fourier Transform of the continuous time window taper function is calculated as 

      
 2 2 2

2 cos 2 cos

1 4

f f
W f

f

 

 





. (160) 

Plots and characteristics are given in Figure 35 for 0.1  . 
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Figure 35. 
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4.22 Tukey (a.k.a. Tapered-Cosine, Cosine-Tapered) 

The Tukey window is something between a Rectangle window and a Hann window.25  It 
has a flat center section, and cosine tapers towards the edges.  It is a parametric window, 
with the form scaled for unit DC gain as 

 

 
 

 
 

2

1 2

1 cos
1 2

1 2
1 2

0 1 2

t

t

w t t

t




 







  

  
  

     









, (161) 

where the parameter 

0 1 2  . (162) 

Often the parameter  is specified by another parameter r, such that 

1 2 2r   , (163) 

where 

0 1r  . (164) 

Note that 0r   is equivalent to a Rectangle window, and 1r   is equivalent to a Hann 
window. 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form for arbitrary r.  It may be numerically calculated for specific 
parameters, i.e. using a DFT on discrete-time samples of the window function. 

Plots and characteristics are given in Figure 36 for 0.75r  . 

The Tukey window is named after American mathematician John Wilder Tukey. 
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Figure 36. 
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4.23 Bartlett-Hann 

The Bartlett-Hann window taper function is a combination of Bartlett and Hann window 
taper functions.  Specifically, it is calculated with the form scaled for unit DC gain as 

      0 1 22 cos 2 rectw t a a t a t t   , (165) 

with coefficients 

0a  = 0.62, 

1a  = 0.48, and 

2a  = 0.38. (166) 

The Fourier Transform of the continuous time window taper function is calculated as 

 
   

   
0 1

2 2

21

2 sinc

sinc 1 sinc 1

sinc
2 2

a a f

W f a f a f

a f

 
 
 
     
 

       

. (167) 

Plots and characteristics are given in Figure 37. 
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Figure 37.  
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4.24 Blackman 

We recall that Generalized Raised Cosine windows of section 4.15 dealt with the sum of 
a constant and a single cosine term.  The Blackman window now adds an additional 
cosine term.  This additional cosine term is an additional degree of freedom with which to 
optimize window taper function spectral characteristics.  What we today call the 
conventional Blackman window, Blackman himself called his “not very serious 
proposal” window function.8 

The conventional Blackman window, scaled for unit DC gain, is defined as 

       1 2

0 0

1 cos 2 cos 4 rectw t t t t
  
 

 
   
 

, (168) 

where  

0  = 0.42, 

1  = 0.5, and 

2  = 0.08. (169) 

Note that the ends of the conventional Blackman window taper function go to zero, that is 

   0.5 0.5 0w w   . (170) 

The Fourier Transform of the continuous time window taper function is calculated as 

 

 

   

   

1 1

0 0

2 2

0 0

sinc

sinc 1 sinc 1
2 2

sinc 2 sinc 2
2 2

f

W f f f

f f

 
 
 
 

 
 
 
 

     
 
 
    
 

. (171) 

Plots and characteristics are given in Figure 38.  Note that the sidelobes taper at 18 dB 
per octave. 
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Figure 38. 
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4.25 Exact Blackman 

By adjusting the coefficients of the Blackman slightly, the PSL may be reduced even 
more, but at the expense of a slower sidelobe taper.  Blackman referred to his “not very 
serious proposal” window as an approximation to what we today call the Exact Blackman 
window.8 

The Exact Blackman window, scaled for unit DC gain, is still defined as 

       1 2

0 0

1 cos 2 cos 4 rectw t t t t
  
 

 
   
 

, (172) 

but now where the coefficients are stipulated as 

0  = 7938/18608,  

1  = 9240/18608, and 

2  = 1430/18608. (173) 

Note that the ends of the Exact Blackman window taper function do not go absolutely to 
zero, that is 

   0.5 0.5 0w w   . (174) 

The Fourier Transform of the continuous time window taper function is still calculated as 

 

 

   

   

1 1

0 0

2 2

0 0

sinc

sinc 1 sinc 1
2 2

sinc 2 sinc 2
2 2

f

W f f f

f f

 
 
 
 

 
 
 
 

     
 
 
    
 

. (175) 

Plots and characteristics are given in Figure 39 for 0.6  .  Note that with respect to the 
conventional Blackman window taper function, PSL is reduced but at the expense of a 
slower sidelobe taper. 



- 95 - 

 

 
Figure 39.  
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4.26 Blackman-Harris Family 

The Blackman-Harris family of window taper functions are defined by a sum of cosine 
terms, namely 

     
1

0

cos 2 rect
L

l
l

w t A l t t 




 
   

 
 , (176) 

where 

l  = coefficient index, 0 1l L   , 
L = “order” of the window function, and 

l  = coefficient, and 

A = scale factor that might be used to force a unity DC gain. (177) 

This family of window functions is discussed extensively by Blackman, et al.7,8,9,10  
Harris used gradient search techniques to find specific coefficients to optimize the 
window functions in various respects.  These specific windows are then called Blackman-
Harris windows.4 

The Raised-Cosine family of window taper functions are in fact a subset of the 
Blackman-Harris family where the number of terms, or order, is 2L  . The conventional 
Blackman, and Exact Blackman window taper functions of the previous sections are also 
members of this family with 3L  .  Most other practical window taper functions from 
this family use 3L   or 4L  . 

Classically, 1A   and 0 1   for conventional Blackman-Harris family windows, 

causing a peak value of unity for the window function itself.  However, we will stipulate 
to unity DC gain, which requires scaling the classical window function by 

01A  . (178) 

Blackman-Harris window taper functions scaled to unity DC gain are sometimes called 
“Rife–Vincent” window taper functions.26,27 

The Fourier Transform of a continuous time window taper function from this family, 
scaled to unity DC gain, is calculated as 

        
1

0 1

1
sinc sinc sinc

2

L

l l
l

W f f f l f l 





     . (179) 

We offer the comment that very low sidelobe levels can be achieved by these window 
taper functions, but also that very small changes in coefficients can have significant 
impact on the ultra-low sidelobe level. 
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Specific names for particular coefficient sets are not consistent in the literature, or in 
available software tools. 

Table 1 gives coefficients for some of the more popular Blackman-Harris window taper 
functions.  Plots for these are given in Figure 40 through Figure 50.  We note that our 
performance numbers differ slightly from those of Harris. 

4.27 Nuttall (a.k.a. Nutall) Family 

Nuttall28 window taper functions are members of the Blackman-Harris family of window 
functions, where the coefficients are chosen to achieve some very specific characteristics. 

Nuttall developed different sets of coefficients to satisfy a number of different 
optimization criteria, for both 3L   and 4L   .  This resulted in a number of different 
specific window taper functions. 

Specific names for particular coefficient sets are not consistent in the literature, or in 
available software tools. 

Table 1 gives coefficients for some of the more popular Nuttall window taper functions.  
Plots for these are given in Figure 40 through Figure 50. 

4.28 Mottaghi-Kashtiban-Shayesteh 

Other coefficient sets for the Blackman-Harris family have also been favored by some 
authors for specific purposes.  One such set of coefficients was proposed by Mottaghi-
Kashtiban and Shayesteh,29 for the purpose of improving on the Hamming window.   

Note that this window adjusts its coefficients based on discrete-time window length. 

This particular window taper function is also included in Table 1.  Plots for this window 
are given in Figure 51 and Figure 52. 
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Table 1. 

0 1 2 3 Window Taper Function 

0.44959 0.49364 0.05677  61 dB Three-Term Blackman-Harris4 

0.42323 0.49755 0.07922  67 dB Three-Term Blackman-Harris4 

0.4243801 0.4973406 0.0782793  Three-Term Nuttall,  
Minimum Sidelobe28 
(a.k.a. Three-Term Blackman-Harris) 

0.40897 0.5 0.09103  Three-Term Nuttall,  
Continuous First Derivative28 

0.375 0.5 0.125  Three-Term Nuttall,  
Continuous Third Derivative28 

0.40217 0.49703 0.09892 0.00188 74 dB Four-Term Blackman-
Harris28,† 

0.35875 0.48829 0.14128 0.01168 92 dB Four-Term Blackman-Harris4 

0.3635819 0.4891775 0.1365995 0.0106411 Four-Term Nuttall,  
Minimum Sidelobe28 
(a.k.a. Blackman-Nuttall ) 

0.355768 0.487396 0.144232 0.012604 Four-Term Nuttall,  
Continuous First Derivative28 

0.338946 0.481973 0.161054 0.018027 Four-Term Nuttall,  
Continuous Third Derivative28 

10/32 15/32 6/32 1/32 Four-Term Nuttall,  
Continuous Fifth Derivative28 

0.5363 -
0.14/(N-1) 

0.996 – 0 0 0.004 Mottaghi-Kashtiban-Shayesteh29 

 
 
  

                                                 

† Harris4 contains a slight error in his listed coefficients. 
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Figure 40.  
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Figure 41. 
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Figure 42. 
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Figure 43. 
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Figure 44. 
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Figure 45. 
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Figure 46. 
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Figure 47. 
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Figure 48. 
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Figure 49. 
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Figure 50. 
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Figure 51. 
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Figure 52.  (calculated with 40 samples) 
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4.29 Exponential (a.k.a. Poisson) 

The Exponential window taper function is a truncated two-sided decaying exponential 
function which in its form scaled for unit DC gain is  

   2 recttw t Ae t , (180) 

where decay parameter  

0  , (181) 

and the desired scale factor is 

 

1
1 2

2

1 2 1

tA e dt
e












 
  
   
  . (182) 

The Fourier Transform of the continuous time window taper function is calculated to be  

 
    
  2 2 2

cos sin

1

f f f e
W f

f e





     

 

 


 
. (183) 

Plots and characteristics for this window for several values of  are given in Figure 53, 
Figure 54, and Figure 55. 

Harris4 calls this a Poisson window and references Bary17 for this window. 
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Figure 53. 



- 114 - 

 

 
Figure 54. 
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Figure 55. 
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4.30 Hanning-Poisson 

This window is a product of an Exponential (Poisson) window and a Hann (Hanning) 
window.  Scaled for unit DC gain, this becomes  

      2 1 cos 2 recttw t Ae t t   , (184) 

where decay parameter  

0  , (185) 

and the desired scale factor is 

    
 

1 2 21 2
2

2 2 2
1 2

1 cos 2
2

tA e t dt
e




  


  








  
   
    
  . (186) 

The Fourier Transform of the continuous time window taper function is calculated to be  

 

    
    

    

 
   

4 2 2 2 2 4 4

2 2 2

2

2 2 2

6 4 2 2

22 4 4 2 2 6

2 3 4 1 2

1 3 cos

3 1 sin

2 3

1 3 1

f f f

A f f
e

f f f
W f

f

f f f



    

   


   

  

  



      
                 

  
 
 
      

. (187) 

Plots and characteristics for this window for several values of  are given in Figure 56, 
Figure 57, and Figure 58.  Note that as  increases, distinct sidelobes disappear into the 
asymptote.  Consequently, the first null and parameters that depend on the first null 
become indistinct. 
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Figure 56. 
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Figure 57. 
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Figure 58. 
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4.31 Gaussian (a.k.a. Weierstrass) 

The Gaussian window taper function is a truncated Gaussian function, which in its form 
scaled for unit DC gain is 

   
2 22 recttw t Ae t , (188) 

where truncation parameter  

  = number of standard deviations at which truncation occurs, (189) 

and the desired scale factor is 

 
2 2

1
1 2

2

1 2

2

erf 2

tA e dt  









 
  
 
 
  , (190) 

where we identify the error function as 

 
2

0

2
erf

z
xz e dx


    = Gaussian error function. (191) 

The Fourier Transform of the continuous time window taper function is calculated to be 
the convolution 

   
2 2

22
2

*sinc
f

W f A e f







 . (192) 

For reasonably large  and small f, this can be approximated as 

 
2 2

22

f

W f e





 . (193) 

Plots and characteristics for this window for several values of  are given in Figure 59, 
Figure 60, and Figure 61. 

Achieser18 calls this form a Weierstrass kernel. 

We observe that the exponential is a quadratic function in Eq. (188).  A more generalized 
Gaussian window taper function might use some other power of t . 
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Figure 59. 
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Figure 60. 
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Figure 61.  
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4.32 Parzen Exponential Family 

Parzen1 suggested a family of window taper functions of the form, which we have scaled 
for unit DC gain as 

   2 rect
r

tw t A e t , (194) 

where parameters  

0  , and 
0r   , (195) 

and the desired scale factor for unit DC gain is 

1
1 2

2

1 2

r
tA e dt







 
 
 
 
  . (196) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Plots and characteristics for this window for an example parameter set are given in Figure 
62. 
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Figure 62. 
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4.33 Dolph-Chebyshev (a.k.a. Chebyshev, Tchebyschev) 

The Dolph-Chebyshev window seeks to achieve the most narrow mainlobe for a given 
PSL.30  It is unique among the other windows presented heretofore in the report in several 
respects.  Unlike more typical window taper functions, this window is defined by its 
frequency response.  The frequency response of the continuous time window taper 
function is calculated to be  

 
   

 
2 2

2

, cos

cos

f N f A
W f

A

 







, (197) 

where 

   2ln 1acosh
A

 
 

 
  , (198) 

2010 S  , and (199) 

S = sidelobe level with respect to mainlobe peak in dBc, with 0S  . (200) 

The function  specifies the sign of the expression, and equates to 

 
1 , 0

,
1

for N odd or f
f N

else


 
 

 , (201) 

where N = the expected discrete-time window function length.  We note that for even N, 
this window taper function is not symmetric with f, thereby somewhat rare among 
window functions. 

The actual window taper function itself is normally numerically calculated from the 
frequency response.31  See Appendix A. 

Plots and characteristics for this window for various sidelobe levels are given in Figure 
63 through Figure 66. 

This is not a particularly practical window function in that the continuous window has 
infinite noise bandwidth and infinite ISL, owing to the sidelobes never tapering towards 
zero.  Note that this requires impulses at the ends of the window function itself, in fact 
violating the property in Eq. (31).  While achievable for sampled window functions, noise 
bandwidth and ISL become highly dependent on the sample-length of the discrete time 
window.  Nevertheless, it represents an ideal; a limit to what is achievable. 
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Original Formulation 

The origin of this window function is via a development by Dolph that employed 
Chebyshev polynomials.  Specifically, the discrete-frequency spectrum of the window 
taper function is developed directly to be 

   

1 0

1 0

cosN
s

K
N

f
T x

f
W k N

T x





  
      ,     for 0 1k K   , (202) 

where Chebyshev polynomials of the first kind are defined as those satisfying 

    cos acosnT x n x ,     for 1x    , (203) 

and for this development, the sidelobe-level parameter is 

 0
1

cosh acosh
1

x
N

    
, (204) 

where   is defined as in Eq. (199).   

Frequency in Eq. (202) takes on the discrete values 

s
k

f f
K

 ,     for 0 1k K   , (205) 

where for a unit-length aperture, we identify the sampling frequency as 

1sf N  . (206) 

Recall that we expect K N . 

As N gets very large, with samples approaching the continuous case, we may employ Eq. 
(198), and note that 
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f
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f
  
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 2 2
1 0 cos cosN N

s
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T x f A else
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  

  
       

. (207) 

ultimately allowing the form given in Eq. (197). 
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Figure 63. 



- 129 - 

 

 
Figure 64. 
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Figure 65. 
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Figure 66.  
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4.34 Taylor 

The Taylor32 window taper function approximates the Dolph-Chebyshev window’s 
constant sidelobe level for a parameterized number of near-in sidelobes, but then allows a 
taper beyond.  This makes it realizable, and in fact popular in some signal processing 
circles, especially radar signal processing. 

The window function itself, scaled for unit DC gain, is calculated as33 

   
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1 2 cos 2 rect
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m
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w t F mt t
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 , (208) 

where the coefficients are calculated as  
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with 

 22
2

2 1
2

n

A n

 
   
 

,  (210) 

where 

   2ln 1acosh
A

 
 

 
  , (211) 

and 

2010 S  , (212) 

where 

S = sidelobe level with respect to mainlobe peak in dBc, with 0S  , and 
n  = the distance from the mainlobe for which sidelobes are constant. (213) 
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The Fourier Transform of the continuous time window taper function is calculated to be  

        
 1

1

sinc sinc sinc
n

m
m

W f f F f m f m



     . (214) 

We make the following observations. 

 For 1n  , the Taylor window reduces to a rectangle window. 

 As n  , the Taylor window approaches a Dolph-Chebyshev window. 

Taylor suggests minimum values for n  depending on sidelobe level S.  Specifically, he 
suggests 3n   for 25S    dBc, and 6n   for 40S    dBc.  For Discrete Time 
window taper functions, the following restrictions have been proposed to assure desired 
sidelobe characteristics are in fact achievable.34 

9 5

S N
n        for 50 30S    . (215) 

 
Figure 67.  Taylor window -3 dB mainlobe width for various combinations of n  and S.34 

Plots and characteristics for this window for several parameter combinations are given in 
Figure 68 through Figure 71. 



- 134 - 

 

 
Figure 68. 
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Figure 69. 
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Figure 70. 
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Figure 71. 
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4.35 Cauchy (a.k.a. Abel-Poisson) 

The Cauchy window taper function scaled for unit DC gain, is calculated as 

 
 

 2

1
rect

1 2
w t A t

t

 
 
  

, (216) 

where the decay parameter  

0  . (217) 

and the unit DC gain scale factor is 

 atan
A




 , (218) 

The Fourier Transform of the continuous time window taper function is calculated to be 
the convolution 

   
   2

*sinc
atan

f

ae
W f f

a






 . (219) 

This essentially describes a smoothed two-sided exponential for small f, and a smoothed 
sinc function for larger f. 

Plots and characteristics for this window for several parameter combinations are given in 
Figure 72, Figure 73, and Figure 74. 

While Harris4 calls this a Cauchy window, Achieser18 refers to this as a Abel-Poisson 
kernel. 
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Figure 72. 
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Figure 73. 
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Figure 74. 



- 142 - 

 

4.36 Parzen Geometric Family 

Parzen1 suggested a family of window taper functions of the form, which we have scaled 
for unit DC gain as 

   rect
1 2

r

A
w t t

t



, (220) 

where parameters  

0  , and 
0r  , (221) 

and the desired scale factor for unit DC gain is 

1
1 2

1 2

1

1 2
r

A dt
t





  
  

    
  . (222) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Plots and characteristics for this window for an example parameter set are given in Figure 
75. 
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Figure 75. 
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4.37 Maximum Energy (a.k.a. Slepian) Tapers 

Slepian and Pollak35 investigated the question (rephrased in language consistent with this 
report) stated as “Given a finite aperture of data, how to we taper the data to maximize 
the energy in the mainlobe of the filter’s transfer function, for some allowable mainlobe 
width?” 

Their analysis uses prolate spheroidal wave functions, which are particularly suitable for 
investigating simultaneously aperture limited and effectively band-limited signals. The 
answer to the question posed above is in fact the prolate spheroidal wave function of 
order zero.  The specific nature of this prolate spheroidal wave function becomes 
dependent on the allowable time-bandwidth product of the signal.  In terms of window 
taper functions, this is the product of the aperture length and the window spectrum’s 
allowable mainlobe width.  Furthermore, maximizing energy in the window spectrum 
mainlobe means minimizing energy outside the mainlobe, that is, effectively minimizing 
the ISL. 

In a follow-on to the Slepian and Pollak paper cited above, Landau and Pollak36 apply 
this work directly to “Filter Theory,” which is simply the window function we seek. 

Actually calculating the specific prolate spheroidal wave function of order zero to 
provide the desired window function is something less-than-straightforward, in fact quite 
cumbersome, compared to other window taper functions in this report.  Dickey, et al.,37 
describe a procedure for doing so in their Appendix B.  We will forego repeating this 
procedure here in this report, and simply refer the interested reader to the report by 
Dickey, et al. 

Instead, we will move to examine some approximations to the ideal Maximum Energy 
window taper function. 
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4.38 Kaiser-Bessel (a.k.a. Kaiser, I0-sinh) 

This window is an approximation to the ideal Maximum Energy taper described in the 
previous section.  Instead of dealing with the difficulty of calculating the prolate 
spheroidal wave function, Kaiser38 presents a window that uses an approximation based 
on calculating the zero-order modified Bessel function of the first kind.  Kuo and Kaiser 
state “This family of window functions was ‘discovered’ by Kaiser in 1962 following a 
discussion with B. F. Logan of the Bell Telephone Laboratories.” 

The Kaiser-Bessel window taper function scaled for unit DC gain, is calculated as 

       2
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1 2 rect
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w t I t t
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
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, (223) 

where we identify the zero-order modified Bessel function of the first kind as 
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 , (224) 

and we trade spectral sidelobe level against mainlobe width by selecting the parameter  

0  , (225) 

with the unit DC gain scale factor calculated to be 
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The Fourier Transform of the continuous time window taper function is calculated to be  
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Plots and characteristics for this window for several parameter combinations are given in 
Figure 76 through Figure 79. 
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Figure 76. 
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Figure 77. 
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Figure 78. 
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Figure 79. 
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4.39 Cosh Family (a.k.a. van der Maas) 

This window family was presented by Avci and Nacaroglu,39 who state “It is derived in 
the same way as the Kaiser window, but has no power series expansion in its time 
domain representation – as the Kaiser window does.  The design equations are 
empirically established for the proposed window.” 

The Cosh window taper function family scaled for unit DC gain, is calculated as 
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  , (228) 

where we trade spectral sidelobe level against mainlobe width by selecting the parameter  

0  , (229) 

with the unit DC gain scale factor calculated to be 
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 . (230) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Plots and characteristics for this window for several parameter combinations are given in 
Figure 80, Figure 81, and Figure 82. 

Avci and Nacaroglu also propose a modification to this window taper function by raising 
Eq. (228) to a power.40 

Migliacco, et al.,41 call this a “Knab” window, although Knab42 himself attributes this 
form to van der Maas.  We will reserve the nomenclature of a “Knab window” to another 
formulation presented later. 
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Figure 80. 
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Figure 81. 
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Figure 82. 
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4.40 Avci-Nacaroglu Exponential 

This window family was presented by Avci and Nacaroglu,43 who state, as with the Cosh 
family of window functions in the previous section, it is “derived in the same way of the 
derivation of Kaiser window, but it has the advantage of having no power series 
expansion in its time domain function.”  

This window taper function family scaled for unit DC gain, is calculated as 

 
 2

1 2 1t
w t Ae

   
  , (231) 

where we trade spectral sidelobe level against mainlobe width by selecting the parameter  

0  , (232) 

with the unit DC gain scale factor calculated to be 
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The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Plots and characteristics for this window for several parameter combinations are given in 
Figure 83, Figure 84, and Figure 85. 



- 155 - 

 

 
Figure 83. 
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Figure 84. 
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Figure 85. 
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4.41 Knab 

Knab,44 while investigating optimal interpolation kernels, proposed the following 
window taper function, scaled for unit DC gain as 
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where we trade spectral sidelobe level against mainlobe width by selecting the parameter  

0  , (235) 

with the unit DC gain scale factor calculated to be 
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The Fourier Transform of the continuous time window taper function is calculated to be 
the convolution 
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A f
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. (237) 

The Fourier Transform of the continuous time window taper function is not readily 
calculated in closed-form.  It may be numerically calculated for specific parameters, i.e. 
using a DFT on discrete-time samples of the window function. 

Plots and characteristics for this window for several parameter combinations are given in 
Figure 86, Figure 87, and Figure 88. 

We note that the name “Knab” window is sometime aliased to the Cosh family of 
window taper functions presented earlier. 
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Figure 86. 
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Figure 87. 
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Figure 88. 
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4.42 Barcilon-Temes 

This window was developed by Barcilon and Temes45 by using a “weighted” minimum-
energy criterion for the sidelobes.  It is in fact a compromise between the Kaiser-Bessel 
and the Dolph-Chebyshev windows.  Like the Dolph-Chebyshev window, this window is 
normally specified by its frequency response.  The frequency response of the continuous 
time window taper function is calculated to be  

 
         

    

2 2 2

2
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C x C x C x C
W f

x C C C

     
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
, (238) 

with the scaled frequency parameter 

x f
C


 , (239) 

where the parameter C is effectively a time-bandwidth measure, which Harris equates to 
a different parameter  as 

 acosh 10C  . (240) 

Note that Eq. (238) has a unit DC value. 

The actual window taper function itself is normally numerically calculated from this 
frequency response with an Inverse-DFT.4  See Appendix A. 

Plots and characteristics for this window for various sidelobe levels are given in Figure 
89, Figure 90, and Figure 91. 
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Figure 89. 
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Figure 90. 
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Figure 91. 
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4.43 Ultraspherical (a.k.a. Unispherical) 

Ultraspherical window taper functions were presented by Deczky,46 and represent a class 
of window functions “based on the orthogonal polynomials known as the Gegenbauer or 
Ultraspherical Polynomials.” They may be viewed as a generalization of the Dolph-
Chebyshev window in that they contain two parameters; one parameter that controls PSL, 
and another parameter to specify the taper rate of the sidelobes.  The Dolph-Chebyshev 
window is just a special case where the taper rate is zero, i.e. no sidelobe taper at all of 
the spectrum.  Bergen and Antoniou47 also offer an excellent discussion of this family of 
window functions. 

Specifically, the discrete-frequency spectrum of the window taper function of length N is 
developed directly to be 

  1 0 cosK N
s

f
W k N A C x

f
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,     for 0 1k K   , (241) 

where the Ultraspherical polynomial of degree n is defined by the recurring relationships 

 0 1C x  , 
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The spectral sidelobe taper rate is controlled by 

  = sidelobe taper rate parameter. (243) 

As  increases, sidelobes roll-off increases. For low values of , the roll-off rate is very 
roughly about 20  dB/decade.    

For this development, we further refine the parameter  

 20
0

1
cosh acosh 10

1
x

N
    

, (244) 

where 

 = sidelobe parameter. (245) 

These parameters are not independent with respect to sidelobe taper and PSL.  For 
example, the following table details PSL coefficients to calculate approximate   for 
various combinations of  and desired PSL in dBc. 
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Table 2. 

 1p  0p  

1    1.1554 4.5627 

2   1.3279 12.7235 

3   1.5143 23.6411 

4   1.7134 36.9902 

We calculate the approximate desired sidelobe parameter with the linear relationship 

1 0p S p   . (246) 

where 

S = sidelobe level with respect to mainlobe peak in dBc, with 0S  . (247) 

Frequency in Eq. (241) takes on the discrete values 

  sf k K f ,     for 0 1k K   , (248) 

where for a unit-length aperture, we identify the sampling frequency as 

1sf N  . (249) 

Recall that we expect K N .  The scale factor to provide unit DC gain is calculated as 

   1

1 0NA C x 
 . (250) 

With  KW k so identifies, the discrete-time window function may be therefrom 

calculated.  See Appendix A.  Deczky also offers a Matlab® program to generate 
ultraspherical window functions, albeit limited to odd N. 

As previously stated, this window approaches a Dolph-Chebyshev window as 0  .  
Bergen and Antoniou also relate this to a Saramäki window for 1  , and to a Legendre 
window for 1 2  .  These will be discussed later. 

Plots and characteristics for this window for various parameter combinations are given in 
Figure 92 through Figure 95. 
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Figure 92. 
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Figure 93. 
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Figure 94. 
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Figure 95. 
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4.44 Saramäki 

The Saramäki48 window seeks to approximate the Kaiser window, but also with easier 
calculations.  

Unlike more typical window taper functions, this window is also defined by its frequency 
response.  The frequency response of the continuous time window taper function is 
calculated to be  
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, (251) 

where 

  = distance of first null from mainlobe peak, (252) 

and the scale factor to provide unit DC gain is 

  1
2sinc 1A 


   
 

. (253) 

We may approximately relate  heuristically to the desired sidelobe level with 

0.0389  + 0.4509S   , (254) 

where 

S = sidelobe level with respect to mainlobe peak in dB, with 0S  . (255) 

The actual window taper function itself is normally numerically calculated from the 
frequency response using an Inverse DFT.  See Appendix A. 

Plots and characteristics for this window for various sidelobe levels are given in Figure 
96 and Figure 97. 

 

Original Formulation 

The origin of this window function is via a development by Saramäki that was performed 
using a discrete-frequency formulation. 

Specifically, the discrete-frequency spectrum of the window taper function is developed 
directly to be 
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W k N
N x

 
 
 
 
 
 

,     for 0 1k K   , (256) 

where  

cos 2 1
s

f
x

f
  

 
   

 
,     for 1x    , (257) 

and for this development, the sidelobe-level parameter is 

2
1 cos

2
1 cos

N

N






   
 
   
 

, (258) 

where  is defined as in Eq. (252).   

Frequency in Eq. (257) takes on the discrete values 

s
k

f f
K

 ,     for 0 1k K   , (259) 

where for a unit-length aperture, we identify the sampling frequency as 

1sf N  . (260) 

Recall that we expect K N . 

As N gets very large, with samples approaching the continuous case, we note that 

 

 

 2 2

2 2

sin acos sin 1
2
1 1sin acos
2

N

N
x f

fN x

 

 

 
  

  
    
 

,   (261) 

ultimately allowing the form given in Eq. (251). 
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Figure 96. 
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Figure 97. 
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4.45 Legendre 

Jaskula49 presents a window taper function based on modified Legendre polynomials.  
Specifically, the discrete-frequency spectrum of the window taper function of length N is 
developed directly to be 

  1 0 cosK N
s

f
W k N A P x

f


  
      

,     for 0 1k K   , (262) 

where the Legendre polynomial of degree n is defined by the recurring relationships 

 0 1P x  , 

 1P x x , and 

          1 2
1

2 1 1n n nP x x n P x n P x
n      . (263) 

For this development, we further refine the parameter  

 20
0

1
cosh acosh 10

1
x

N
    

, (264) 

where 

 = sidelobe parameter. (265) 

We calculate the approximate desired sidelobe parameter with the heuristic linear 
relationship 

1.0754 1.7388S   , (266) 

where 

S = sidelobe level with respect to mainlobe peak in dB, with 0S  . (267) 

Frequency in Eq. (262) takes on the discrete values 

s
k

f f
K

 ,     for 0 1k K   , (268) 

where for a unit-length aperture, we identify the sampling frequency as 

1sf N  . (269) 
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Recall that we expect K N .  The scale factor to provide unit DC gain is calculated as 

   1
1 0NA P x


 . (270) 

With  KW k so identified, the discrete-time window function may be therefrom 

calculated.  See Appendix A.  Jascula also offers a Matlab® program to generate 
Legendre window functions, albeit for odd N. 

Spectral sidelobe roll-off rate is about 10  dB/decade.    

Plots and characteristics for this window for various parameter combinations are given in 
Figure 98 and Figure 99.  
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Figure 98. 
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Figure 99. 
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4.46 Modified First-Order Bessel (a.k.a. I1-cosh) 

Prabhu and Bagan50 attribute this window to an unpublished Bell Laboratories 
memorandum by Kaiser in 1964.  In contrast to the Kaiser-Bessel window taper function 
discussed in section 4.38, this window is now defined in terms of the first-order modified 
Bessel function of the first kind.   

Accordingly, this window taper function family scaled for unit DC gain, is calculated as 

 
 

   
 

2
1

2
1

1 2
rect

1 2

I t
w t A t

I t





  
 


, (271) 

where we identify the first-order modified Bessel function of the first kind as 

   

2 1

1
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! 1 ! 2
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x
I x

k k





         
 , (272) 

and we trade spectral sidelobe level against mainlobe width by selecting the parameter  

0  , (273) 

with the unit DC gain scale factor calculated to be 

 
 
1

cosh 1

I
A

 





. (274) 

The Fourier Transform of the continuous time window taper function is calculated to be  

 
   

 

2

1

cosh 1 cosA f f
W f

I

  

 

        . (275) 

Plots and characteristics for this window for several parameter combinations are given in 
Figure 100, Figure 101, and Figure 102. 
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Figure 100. 
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Figure 101. 
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Figure 102. 
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4.47 Shayesteh-Kashtiban 

Shayesteh and Mottaghi-Kashtiban51 developed a window taper function by optimizing 
the coefficients of a Hamming window using an Extended Kalman Filter (EKF).  It may 
be thought of as having features from both a Lanczos window and a Dolph-Chebyshev 
window. 

This window is defined in the discrete-time domain as 
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, (276) 

where the DC gain scale factor is calculated to be 
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
. (277) 

The spectrum of this window taper function is not readily calculated in closed-form.  It 
may be numerically calculated for specific parameters, i.e. using a DFT on the discrete-
time samples of the window function, as given in Eq. (276). 

Note that for very large N, the endpoints of the window function itself become very 
impulse-like, much like the Dolph-Chebyshev window, and the spectrum itself becomes 
very Dolph-Chebyshev-like, albeit without the sidelobe-level control. 

Plots and characteristics for this window for 16384N   given in Figure 103. 
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Figure 103. 
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4.48 Kaiser-Bessel-Derived (a.k.a. KBD, Dolby) 

This window is derived from the Kaiser-Bessel window taper function described in 
section 4.38, where we recall, and re-designate the window function as 

       2
0 1 2 rect

sinhKBw t I t t
 


   
 

. (278) 

This now becomes the kernel for the Kaiser–Bessel-Derived window taper function, 
which we calculate for continuous time as 
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



. (279) 

Because we have defined the Kaiser-Bessel window kernel with unit DC gain, this 
reduces to 

     
2 1 2

1 2

rect
t

KBw t A w d t 




 
    
 

 . (280) 

For this new window to have unit DC gain, we calculate 

 

1
2 1 21 2

1 2 1 2

t

KBA w d dt 




 

  
         
  . (281) 

We stipulate that more typically, discrete-time Kaiser-Bessel-Derived window tapers are 
calculated from discrete-time Kaiser-Bessel window functions.  In fact, this is how they 
were originally derived.  This, of course, turns all the integrations into summations.  The 
Kaiser–Bessel-Derived window taper function enjoys particular popularity for audio 
encoding, and in fact was developed for this application to meet some unique required 
characteristics.52 

The spectrum of this continuous window taper function is not readily calculated in 
closed-form.  It may be numerically calculated for specific parameters, i.e. using a DFT 
on the discrete-time samples of the window function. 

Examples are plotted in Figure 104, Figure 105, and Figure 106. 
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Figure 104. 



- 188 - 

 

 
Figure 105. 
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Figure 106. 
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4.49 Vorbis (a.k.a. Ogg Vorbis) 

This window also enjoys popularity for audio encoding.53,54  This window taper function, 
scaled for unit DC gain, is calculated as 

     2sin cos rect
2

w t A t t
    

 
. (282) 

For this new window to have unit DC gain, we calculate 

 0

2

4
1.6606A

J 
  , (283) 

where 

 0J x  = Bessel function of the first kind, order zero, of x. (284) 

The spectrum of this continuous window taper function is not readily calculated in 
closed-form.  It may be numerically calculated for specific parameters, i.e. using a DFT 
on the discrete-time samples of the window function. 

Example plots are given in Figure 107. 
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Figure 107.  
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4.50 Flat-Top 

This window enjoys popularity for instrumentation spectral analysis.55,56  It is intended to 
have a spectrum that approaches a rectangle function.  It is a specific member of the 
general Blackman-Harris family in that it is defined as a particular sum of cosine terms 
given by 

     
1

0

cos 2 rect
L

l
l

w t A l t t 




 
   

 
 , (285) 

where 

l  = coefficient index, 0 1l L   , 

l  = coefficient, and 

01A   = scale factor used to force a unit DC gain. (286) 

The specific coefficients for 5L   are  

0   0.21557895, 

1   0.41663158, 

2   0.277263158, 

3   0.083578947, and 

4   0.006947368. (287) 

The Fourier Transform of this continuous time window taper function is calculated as 

        
1

0 1

1
sinc sinc sinc

2

L

l l
l

W f f f l f l 





     . (288) 

Example plots are given in Figure 108.  An unusual feature of this window is that it in 
fact has negative values in  w t .  

The specific coefficients for 3L   are given as 

0   0.2811, 

1   0.5209, and 

2   0.1980. (289) 

Example plots for this window for 3L   are given in Figure 109. 
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Figure 108. 
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Figure 109. 
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5 Related Discussion 

We now offer a number of disjoint comments and observations. 

 Often, the mainlobe of the spectrum of some window taper function itself can be, 
and often is, used as a window taper function.  An example is the mainlobe of a 
sinc function, where the sinc function is the spectral response of a Rectangle 
window function. 

 Many other window functions can be derived from those presented here by 
combinations of adding, multiplying, or convolving windows (or their spectra) 
with themselves or any number of other window functions, in addition to varying 
parameters and/or scaling. 

 Nonlinear combinations of tapered functions of the data may also be used to 
advantage, although they carry some baggage as well.57 

 While we have presented window taper functions that provide real and even 
spectra, we stipulate that window taper functions can also be developed that yield 
different sidelobe responses on either side of the mainlobe.  A reason for this 
might be foreknowledge that weak signals exist on just one side of a strong signal, 
such as radar ranging through a lossy medium.58  Such window functions are 
necessarily complex-valued, as opposed to real-valued. 

 Another application requiring an odd-symmetric window taper function is the 
difference channel of a monopulse radar antenna.  Here, the desire is for 
minimum (or at least controlled) sidelobes in the difference between opposite 
halves of the aperture.  Bayliss addressed optimizing such a window taper 
function for monopulse antennas.59 

 In some applications, it is useful to process a larger aperture in terms of 
subapertures.  This causes a coupling of effects from weighting within the 
subapertures, and then weighting across subapertures.60  Furthermore, weighting 
the larger aperture before parsing into subapertures also has effects such as 
moving phase-centers in the subapertures, and imparting nonuniform subaperture 
gains.61 

 While we have discussed herein using amplitude tapers to generate a precise 
spectral response, we note that we can often produce essentially equivalent 
spectral responses using phase-only filter functions.62  This is quite common for 
generating Non-Linear FM chirp radar waveforms.63 

 While this report discussed window taper functions for one-dimensional apertures 
of signals, imaging systems will often deal with two-dimensional apertures 
requiring two-dimensional windows.  An example of this is Synthetic Aperture 
Radar.64  These may be orthogonal applications of one-dimensional windows, or 
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bona fide two-dimensional windows.  Another example is a non-rectangular 
antenna aperture or array.  These concepts can also be extended to more than two 
dimensions. 

 We note that especially for two-dimensional window taper functions, 
beamshaping for laser beams is very much related.65 

 While we have herein dealt with tapering apertures to control sidelobes, we note 
that the same principles apply to controlling spectral leakage into “notches” 
inserted into a spectrum.66 

 

Other Techniques for Spectral Estimation 

We briefly mention that other techniques have been explored over the years to mitigate 
effects of finite apertures, including mitigation of mainlobe-broadening while still 
suppressing sidelobes.  These techniques often fall under the heading of “spectral 
estimation” techniques.  We offer that many of these techniques are non-linear in nature, 
and often very sensitive to SNR of the input signal.  Furthermore, we stipulate that the 
following are two entirely separate problems: 

1. We are searching for a known number of sinusoids in the input data. 

2. We are searching for an indeterminate number of general signals in the input data. 

Techniques that might excel at the former, may in fact break down horribly for the latter.  
Nevertheless, the nature of the problem at hand might warrant a look at some of the 
techniques offered in this arena. 

Superresolution 

We further offer that it has been asked “With fine-enough resolution, do we really care 
about sidelobes?”  This in turn leads to the notion of “How do we improve the resolution 
of a detected signal to something finer than the finite aperture-width might otherwise 
allow?  That is, can we super-resolve the signal in which we are interested?” 

Much effort and investment has been spent on superresolution techniques of various sorts 
over the years, with sometime extraordinary claims having been put forth.  Except that to 
acknowledge that this area of study exists we will not discuss it further beyond to say that 
those techniques generally exhibit the same limitations as stated above for spectral 
estimation techniques generally.67   
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6 Conclusions 

We reiterate the following key points. 

 Finite apertures inherently generate sidelobes in the spectrum of the signal, 
mainly due to their edges. 

 The spectra from finite apertures of a signal can be modified to reduce sidelobes 
by tapering, or windowing, the signal within the aperture. 

 A plethora of window taper functions exist to optimize various aspects and trades 
in the characteristics of the spectrum of the signal. 

 Proper selection of a window taper functions requires first understanding the 
trades in spectrum characteristics, and defining/acceptable limits and margins for 
those characteristics. 
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“Forgive me my nonsense,  
as I also forgive the nonsense of those that think they talk sense.” 

-- Robert Frost 
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Appendix A – Generating Window Functions from Their 
Spectra 

Our task here is to begin with a window taper function that is defined by its spectrum, 
and calculate the discrete-time weights from it. 

Accordingly, we borrow notation from section 2.6, and repeat some more relevant 
parameters here as 

sff
K   = frequency-sample spacing, and 

1
aT

f
  = time-interval represented by frequency-sample spacing. (A1) 

For the desired window function itself, 

 1

T
T

N 


 = the time-sample spacing, and 

1
sf T
  = the time-sampling frequency. (A2) 

We recall that for a unit-width aperture, where 1T  , then N samples spread from end to 
end over this aperture implies that 

1sf N   ,   for a unit-width aperture. (A3) 

We furthermore recall that the spectrum of the continuous-time window is related to its 
sampled version by 

   KW k N W f k ,  for small k. (A4) 

We will presume that this is essentially true for spectral regions with significant energy, 
which we assert includes the regions 

2k K , (A5) 

and especially for large N. 

Recall that for sampled data, we expect repeated spectra, such that 

   K KW k K W k  ,  for small k. (A6) 



- 200 - 

 

We now define the Inverse Discrete-Frequency Fourier Transform (IDFT) conventionally 
as 

   
1 2

0

1
nK j k
K

K K
k

w n W k e
K




  . (A7) 

This yields a sequence of K time samples covering the span 

 0 at T T   , (A8) 

stepping in increments of T .  For large K, i.e. small T , this becomes effectively a span 

width of aT . 

However, this isn’t quite the span we are seeking.  Rather, we are seeking N time samples 
over the span of time 

2 2T t T   , (A9) 

but still stepping in increments of T . 

This suggests that we wish to modify the IDFT to the following function 
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which we may rewrite as 
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w n W k e e
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 
 
 
 

 . (A11) 

This says that we must pre-multiply the window spectrum with a complex modulation 
before employing a standard conventional IDFT.  Once accomplished, we may extract the 
N-length window taper function as the first N samples of  Kw n , namely 

   N Kw n w n ,   for 0 1n N   . (A12) 

Note that this only contains the explicit sampled 0t   term for odd values of N.  
Nevertheless, in the manner given,  Nw n  may be calculated for all values of N, odd or 

even. 
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